Smart Grid and Microgrid
From NUEESS
m (→System Scheme) |
m (→System Scheme) |
||
Line 11: | Line 11: | ||
==System Scheme== | ==System Scheme== | ||
The Microgrid is invested and shared by a cluster of residents. According to ratios of investment, residents subscribe certain amount of power from the microgrid with low price for unpaid investment cost, fuel cost and management cost. There are three types of flow in the microgrid: electric power flow, thermal power flow and information flow. The electric power is powered by both utility grid and internal hybrid energy generated by wind turbine, micro CHP systems, and battery discharging. Micro CHP is a smaller size CHP for residential generation. For general consideration, some houses in the community are equipped with micro CHP systems, whereas others are not. For the latter, thermal energy can only be generated by electric heat pump. The thermal energy will be stored in the form of hot water in the tank and can be consumed in the future. VRB is chosen to store surplus wind energy and discharge when the wind energy is insufficient for the demand to reduce the energy consumption cost. | The Microgrid is invested and shared by a cluster of residents. According to ratios of investment, residents subscribe certain amount of power from the microgrid with low price for unpaid investment cost, fuel cost and management cost. There are three types of flow in the microgrid: electric power flow, thermal power flow and information flow. The electric power is powered by both utility grid and internal hybrid energy generated by wind turbine, micro CHP systems, and battery discharging. Micro CHP is a smaller size CHP for residential generation. For general consideration, some houses in the community are equipped with micro CHP systems, whereas others are not. For the latter, thermal energy can only be generated by electric heat pump. The thermal energy will be stored in the form of hot water in the tank and can be consumed in the future. VRB is chosen to store surplus wind energy and discharge when the wind energy is insufficient for the demand to reduce the energy consumption cost. | ||
- | [[File:MicrogridScheme. | + | [[File:MicrogridScheme.png | 300px]] |
=People= | =People= | ||
=Publications= | =Publications= |
Revision as of 13:37, 19 August 2011
Contents |
Description
Background
Sustainability has become an imperative requirement on many infrastructures and systems of our society with the impending energy crisis and environment deterioration.Power grids are being transformed into Smart Grid with advanced sensors, information and communication technologies.In smart grid, the energy flow will become two-way between the grid and consumers with renewable energy generations, which will be monitored and controlled by sensors, smart meters, digital controls and analytical tools. Smart Grid usually introduces Demand Response (DR) and Distributed Generation (DG) to improve energy consumption and generation efficiency.
Purpose
- Community level Microgrid based system scheme is designed to make the sustainable energy usage more affordable for ordinary residents.
- Dynamic residential DR with enhanced user-agent interaction is designed for user's preference adaption.
- Shared Cost-led Micro Combined Heat and Power (CHP) management strategy is designed to increase the DG utilization and reduce energy consumption cost.
- Vanadium Redox Battery (VRB) is management for environment adaptive discharging.
System Scheme
The Microgrid is invested and shared by a cluster of residents. According to ratios of investment, residents subscribe certain amount of power from the microgrid with low price for unpaid investment cost, fuel cost and management cost. There are three types of flow in the microgrid: electric power flow, thermal power flow and information flow. The electric power is powered by both utility grid and internal hybrid energy generated by wind turbine, micro CHP systems, and battery discharging. Micro CHP is a smaller size CHP for residential generation. For general consideration, some houses in the community are equipped with micro CHP systems, whereas others are not. For the latter, thermal energy can only be generated by electric heat pump. The thermal energy will be stored in the form of hot water in the tank and can be consumed in the future. VRB is chosen to store surplus wind energy and discharge when the wind energy is insufficient for the demand to reduce the energy consumption cost.
People
Publications
Whos here now: Members 0 Guests 0 Bots & Crawlers 19 |